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1. INTRODUCTION

In this paper we consider a small open spatial economy with monocen-
tric urban area where traffic congestion presents external diseconomy. We
show that a competitive equilibrium allocation, without any governmental
levy of congestion tolls, coincides with the social optimum allocation. The
role of the well known optimal congestion tolls is replaced completely by
profit maximizing competitive prices set by the transit service providers.

In order to prove our results, we first specify our model and derive the
conditions for the competitive equilibrium allocation. In the competitive
model, we assume that there is no government levying congestion tolls.
Instead, we assume that there are many competing commuter transit
services maximizing their own private profits, and we obtain a set of
equilibrium conditions for the competitive economy. Then we turn to
obtain socially optimum allocation. There, we assume a completely planned
economy where the planner maximizes the social gains by choosing the
controllable city variables such as allocation of land, population density,
the amount of consumables, etc., subject to technical and market clearing
conditions. By comparing the two set of conditions, we prove that the
competitive allocation is compatible with the social optimal allocation.

Our result can be understood intuitively in the following manner. When
there exist many competing transit service providers, passengers can select
and use the service that offers the smallest gross travel cost, defined by the
sum of congestion cost and pecuniary cost. As a result, competitive transit
companies must take the gross travel cost as given, and choose their
service prices and the amount of land used for transit service in order to
maximize their profits. The price the competitive transit companies charge
becomes identical to the amount of the optimal congestion toll. This
competitive arrangement internalizes the congestion externality and leads
to the social optimality.

Žw x .Our work is an extension of Kanemoto 12 , Chap. 1 who proved the
optimality of a competitive economy with monocentric urban model with-

w xout congestion, a refinement of Hatta 6 who also proved a similar result
in a model with traffic congestion. Our results should be distinguished

w xfrom those of Oron, Pines, and Sheshinski 16 , which required optimal
congestion tolls levied by the transportation authority.

In addition, our results shed some light on the problem of efficient use
of land for housing and transportation. For housing land, Oron, Pines, and

w xSheshinski 16 showed that the efficient land use for housing required the
optimal congestion tolls and the competitive housing market. On the other
hand, the problem of optimal land use for transportation was first studied

w x w xby Mills and de Ferranti 15 , and Solow and Vickrey 21 . It was further
w x w xdeveloped by Hochman 7 , and Pines and Sadka 18 . These authors
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essentially showed that the efficient land use for transportation required a
cost benefit rule based on the market prices in addition to the optimal
congestion tolls and the competitive housing market. In contrast, our
results show that our competitive economy attains efficient land use for
both housing and transportation without any congestion tolls nor cost
benefit approach. Thus our competitive economy is able to replace the
required optimal congestion toll and cost-benefit rule in order to obtain
the efficient land use pattern.1

Section 2 lays out the basic framework of our model. The market
equilibrium is defined in Section 2.2, and in Section 3 we derive the
necessary conditions for social optimality. Section 4 proves the compatibil-
ity of the competitive and socially optimal allocations. A literature review
is provided in Section 5. Some concluding remarks are given in Section 6.

2. THE COMPETITIVE EQUILIBRIUM

2.1. The Model

2.1.1. Consumers

Consider a spatial economy, where urban and rural differences exist.
The consumers, whether they live in or outside the city, have identical
utility functions, and derive their utility by consuming two goods, consum-
ables and housing space.

The utility function of a representative consumer is given by

u s u z y c, h , 2.1Ž . Ž .

where z, h, and c are the quantities of consumables, units of housing
space consumed,2 and the congestion cost that she suffers by commuting,
respectively. Congestion is measured in units of the consumables, and it
represents the disutility a passenger suffers from commuting. The utility
function is increasing in both z y c and h.

Consumers are utility maximizers. They can move without any cost from
one location to an other in order to achieve the highest possible utility.

In the rural area. Once a consumer decides to live in the rural area, she
receives the rural wage rate, and has to pay for consumables and housing
space she consumes. We set the price of consumables as the numeraire.

1 Ž .See ‘Note on the Literature’ section Section 5 for more detailed discussion of the
literature.

2 Since, in this model, no explicit construction of housing is introduced, the housing space,
h, means the size of a plot of land.
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The rural rental rate and the rural wage rate are r a and w a, respectively.
They are assumed to be identical everywhere in the rural area. Therefore,
the location where a consumer lives within the rural area does not effect
her utility. There is no commuting in the rural area, so there is no
congestion cost. These assumptions imply that the consumer maximizes

u s u z a , ha 2.2Ž . Ž .

subject to

w a s z a q r aha , 2.3Ž .

where z a and ha are quantities of consumables and housing space con-
sumed by the rural consumer, respectively. The maximization determines
the quantities z a and ha as functions of w a and r a. Substituting these back

Ž .in to 2.2 gives the indirect utility function of the form

ua s ¨ w a , r a . 2.4Ž . Ž .

The small city assumption implies that the rural area is large in the
sense that consumers can actually sell as much labor services as they want
at the fixed wage rate w a, and can purchase as large a housing space as
possible at the fixed unit price r a. Then the level of utility achieved by a
rural resident is fixed at ua.

In the urban area. On the other hand, if the consumer decides to live in
the urban area, she has to commute to work in the central business district
Ž .CBD , and receives the urban wage rate w. She purchases consumables
and pays for housing space as the rural residents do. In addition, she must
pay for commuting to the CBD. The commuting cost depends on how far
from the CBD she lives.

The distance from the CBD is measured by the variable x, and we say
that she lives at x, meaning that she lives somewhere in the ring x miles

Ž .away from the CBD. The commuting cost, t x , then is an increasing
Ž .function of x. When she lives at x, her disposable income, w y t x , also

becomes a function of x. Accordingly, the amount of consumables and
Ž .housing space she can purchase depends on x, and we write them as z x

Ž .and h x .
When she commutes from x to the CBD, the consumer suffers from

Ž .total congestion given by the amount of c x . As the land supply at x in
the city is limited, the housing rent must depend on x as well and it is

Ž . 3written as r x .

3 We assume that there are absentee landlords who receive all the rent.
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Putting these assumptions together, a city resident at x maximizes4

u s u z x y c x , h x 2.5Ž . Ž . Ž . Ž .Ž .

subject to

w y t x s z x q r x h x . 2.6Ž . Ž . Ž . Ž . Ž .

The utility maximization implies that

u z x y c x , h xŽ . Ž . Ž .Ž .h s r x . 2.7Ž . Ž .
u z x y c x , h xŽ . Ž . Ž .Ž .z

Since the city is small5 and consumers can move freely, the utility level
of city residents everywhere in the city are identical and they must be
identical to that of the rural residents, ua, in equilibrium. This implies that

u z x y c x , h x s ua . 2.8Ž . Ž . Ž . Ž .Ž .

2.1.2. Urban Producers

Urban producers produce consumables at the CBD with a linear homo-
Ž U . Ugeneous production function given by y s F N , where N is the labor

force employed. The profit maximization implies that

w s FX NU , 2.9Ž . Ž .

which is a constant due to the assumption of constant returns.

2.1.3. Commuter Transportation Industry

In order for the city residents to commute to the CBD, the transporta-
tion industry provides commuter train services.6 The service provided at x

Ž . Ž .is denoted by M x , meaning that M x is the number of the commuters
Ž .who cross the ring at x from the CBD. Since c x is the total amount of

congestion the commuter must face by commuting from x to the CBD, we
Ž .can say that c x is the instantaneous congestion at x and it is denoted by˙

Ž .s x , that is

c x s s x . 2.10Ž . Ž . Ž .˙

4 Ž .Notice that c x is external to the consumer.
5 The smallness of the city is reflected in the fact that the rural rental and wage rates are

given constants.
6 Our model can be interpreted as a model of automobile roadway travel rather than a

model of railroads. See Section 5 where our model is compared to the one by Oron, Pines,
w xand Sheshinski 16 .
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We assume that at the CBD

c 0 s 0. 2.11Ž . Ž .

Ž .The transportation industry produces rail services to transport M x of
Ž .passengers at x. For that it requires an input of land, L x , of land when

Ž .the congestion level at x is s x . Thus its production function is written as

M x s T L x , s x , 2.12Ž . Ž . Ž . Ž .Ž .

Ž . Ž . 7where T ? is assumed to be linear homogeneous in L x .
In addition to the congestion cost, the commuter at x has to pay the

Ž .pecuniary commuting cost t x to get to the CBD. We can define the
Ž .instantaneous pecuniary cost p x such that

x
t x ' p t dt . 2.13Ž . Ž . Ž .H

0

We call the sum of the congestion cost and pecuniary cost the instanta-
Ž .neous gross travel cost and denote it by g x , that is,

g x ' p x q s x . 2.14Ž . Ž . Ž . Ž .

We assume that many privately owned rail service companies are com-
peting with each other for commuter passengers. By competition, the gross

Ž . Ž .travel cost, g x , not p x , must become identical to that of other
Ž . Ž .companies. Each company maximizes its profit by selecting p x and L x

Ž . Ž . 8regarding r x and g x as given.
Ž . Ž .Using 2.12 and 2.14 , the profit maximizing problem of each train

company is written as

x
Max P ' p x T L x , g x y p x y r x L x dx.� 4Ž . Ž . Ž . Ž . Ž . Ž .Ž .H
Ž . Ž .L x , p x 0

Ž . Ž .Maximizing with respect to L x and p x , this yields

r x s p x T L x , s x , 2.15Ž . Ž . Ž . Ž . Ž .Ž .L

and

M x s p x T L x , s x . 2.16Ž . Ž . Ž . Ž . Ž .Ž .s

7 Ž .The congestion level, s x , is external to the production process.
8 Strictly speaking, we should differentiate companies by assigning the subscript i for the

w xith company. However, Hatta 6 showed that in the long run equilibrium the fare structure of
each company becomes identical to each other when each firm has an identical production
function. Thus we ommitted the subscript from the beginning.
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2.2. The Market Equilibrium Conditions

2.2.1. The City Labor Market
Ž .Let us denote the population density at x by N x and the city limit by

x. Since all the city residents work at the CBD, the total people employed,
NU , equals the total number of the city residents, that is

xUN ' N x dx , 2.17Ž . Ž .H
0

which is the equilibrium of the labor market.

2.2.2. The City Land Market
Ž . 9The space of land available in the city at x is denoted by u x . The land

Ž . Ž .demanded by the city residents and the transportation industry is h x N x
Ž .and L x , respectively. Equilibrium in the land market requires

h x N x q L x s u x . 2.18Ž . Ž . Ž . Ž . Ž .

Also the competitive bidding for land implies that at the city limit, we
have

ar x s r . 2.19Ž . Ž .

2.2.3. The Commuter Train Ser¨ice Market

The demand for transportation services at x is given by the total
number of people who live in the band between x and x. The equilibrium
of the transportation market, therefore, is given by

x
M x s N t dt ,Ž . Ž .H

x

which is identical to the following two equations.

Ṁ x s yN x , 2.20Ž . Ž . Ž .
M x s 0. 2.21Ž . Ž .

2.2.4. The Full Market Equilibrium Conditions
Ž .The conditions for the consumer’s utility maximization are 2.6 and

Ž . Ž . Ž .2.7 . The free mobility of consumers gives 2.8 . Equation 2.9 is the
urban producer’s maximization condition. The profit maximization of the

Ž . Ž . Ž .transportation industry implies conditions 2.12 , 2.15 , and 2.16 . Also,

9 If all topography of the urban area is inhabitable, that is, if there is no lakes, no oceans,
Ž .or no mountains, u x is equal to 2p x.
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the definition of congestion and the rail service price provide us with
Ž . Ž . Ž .2.11 , 2.10 , and 2.13 . The equilibrium of the labor market and the land

Ž . Ž . Ž .market are attained by 2.17 , 2.18 , and 2.19 . Also, the equilibrium of
Ž . Ž .the transportation market is attained by 2.20 and 2.21 .

Ž . Ž . Ž .In our model, there are ten unknown functions of x, r x , p x , h x ,
Ž . Ž . Ž . Ž . Ž . Ž . Ž .z x , t x , c x , s x , L x , M x , N x , and three unknown variables, w,

Ux, N , to be determined. On the other hand, there are ten equations which
should hold true in each value of x, and five single equations. The fact that

Ž . Ž .there are two extra single equations reflects the fact that 2.10 and 2.20
are differential equations, and that they require two initial conditions.

When these equations and variables are determined, we say that the
market equilibrium is reached in the small open city.

3. THE SOCIAL OPTIMAL RESOURCE ALLOCATION

3.1. The Problem Stated

The social optimal problem is solved by maximizing

xUJ ' F N y z x y c x N x dxŽ . Ž . Ž . Ž .Ž .H
0

x x ay c x N x dx y r u x dxŽ . Ž . Ž .H H
0 0

Ž . Ž . Ž . Ž . Ž . Ž .subject to 2.8 , 2.10 , 2.12 , 2.17 , 2.18 and 2.20 with the boundary
Ž . Ž .conditions 2.11 and 2.21 .

This means maximizing the net product of the city, which is defined as
the total product minus the net consumption of city residents, minus the
total cost of congestion, minus the payment to the land owners evaluated
by the rural rent. In other words, it is the net economic rent created by
organizing the small open city. The process of maximization is constrained
by the fact that we must guarantee that city residents achieve the same
utility level as rural consumers at ua, and that the supplies of labor, land,
and transportation services in the city must be equal to their respective
demands in order for the maximization to be feasible. We say that the
social optimum is reached in the small open city when this total economic
rent is maximized.10

J can be simplified to

x xU aJ s F N y z x N x dx y r u x dx.Ž . Ž . Ž . Ž .H H
0 0

10 This is considered to be a case of the optimal control problem known as the problem of
Hestenes and Bolza.
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The first order conditions of this problem can be found from the
following Lagrangian defined by

xU U
LL ' F N q I ? dx q mNŽ . Ž .H

0

y l x M x y l x c x q l 0 M 0 q l 0 c 0Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 2

0 1q g c 0 q g M x ,Ž . Ž .2 1

where

I ? ' I z x , h x , L x , c x , N x , M x , s xŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
˙ ˙' l x M x q l x c x y l x N x q l x s xŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 2

q yz x N x y r au x q n x u z x y c x , h x y ua� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
q p x T L x , s x y M x y mN x� 4Ž . Ž . Ž . Ž . Ž .Ž .
q g x u x y h x N x y L x .� 4Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž . Ž . Ž .Notice that n x , l x , m, g x , p x and l x are the Lagrangian2 1
Ž . Ž . Ž . Ž . Ž . Ž .multipliers associated with 2.8 , 2.10 , 2.12 , 2.17 , 2.18 and 2.20 ,

respectively.

3.2. The Necessary First Order Conditions

Then the necessary conditions consist of five equations on the control
variables, two adjoint equations on the state variables, and six transversal-
ity equations on the control parameters. They are summarized as follows

I s l x q p x T L x , s x s 0, 3.1Ž . Ž . Ž . Ž . Ž .Ž .sŽ x . 2 s

I s yN x q n x u z x y c x , h x s 0, 3.2Ž . Ž . Ž . Ž . Ž . Ž .Ž .zŽ x . z

I s y g x N x q n x u z x y c x , h x s 0, 3.3Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .hŽ x . h

I s y g x q p x T L x , s x s 0, 3.4Ž . Ž . Ž . Ž . Ž .Ž .LŽ x . L

I s y l x y m q yz x y g x h x s 0, 3.5Ž . Ž . Ž . Ž . Ž .Ž .NŽ x . 1

˙LL s l x y p x s 0, 3.6Ž . Ž . Ž .M Ž x . 1

˙LL s l x y n x u z x y c x , h x s 0, 3.7Ž . Ž . Ž . Ž . Ž . Ž .Ž .cŽ x . 2 z

LL U s FX NU q m s 0, 3.8Ž . Ž .N

LL s l 0 s 0, 3.9Ž . Ž .M Ž0. 1
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LL s l 0 q g 0 s 0, 3.10Ž . Ž .cŽ0. 2 2

1LL s y l x q g s 0, 3.11Ž . Ž .M Ž x . 1 1

LL s y l x s 0, 3.12Ž . Ž .cŽ x . 2

˙ ˙LL s I x y l x M x y l x c xŽ . Ž . Ž . Ž . Ž .x 1 2

1˙ ˙y l x M x y l x s x q g M x s 0. 3.13Ž . Ž . Ž . Ž . Ž . Ž .1 2 1

4. THE COMPATIBILITY

In this section, we establish that the competitive equilibrium allocation
coincides with the socially optimal allocation.

Ž . Ž . Ž . Ž . Ž .Let r x s g x and p x s p x . In other words, we interpret g x
Ž .and p x to be the rental rate of the land and the price of the rail service

charged at x, respectively.

4.1. Utility Maximization of Urban Consumers
Ž . Ž .Equations 3.2 and 3.3 imply that

u z x y c x , h xŽ . Ž . Ž .Ž .h s r x . 4.1Ž . Ž .
u z x y c x , h xŽ . Ž . Ž .Ž .z

Ž . Ž . Ž .Equations 3.5 , 3.8 and 4.1 imply the consumer’s utility maximization
when the wage is paid by the marginal product of the CBD, and they

Ž . Ž . Ž .correspond to 2.6 , 2.7 , and 2.9 .

4.2. Profit Maximization of Commuter Rail Ser¨ices
Ž . Ž .Equations 3.2 and 3.7 imply that

l̇ x s yN x ,Ž . Ž .2

which, by integration, yields

x x˙y N t dt s l t dt .Ž . Ž .H H 2
x x

Ž . Ž . Ž .Using the definition of M x together with 3.1 and 3.12 , this becomes

M x s p x T L x , s x . 4.2Ž . Ž . Ž . Ž . Ž .Ž .s

Ž . Ž .Equations 3.4 and 4.2 coincide with the profit maximization condi-
Ž . Ž .tions of the transportation industry given by 2.15 and 2.16 .
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4.3. The Optimum City Size
Ž . Ž . Ž .A straight forward calculation of 3.13 with 3.11 and 3.12 yields

aLL s yz x N x y r u x q n x u z x y c x , h x y u� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .x

q p x T L x , s x y M x� 4Ž . Ž . Ž . Ž .Ž .
q g x u x y h x N x y L x y l x q m N x� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .1

as yl x y m y z x y g x h x N x q yr q g x u x� 4� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .1

q yg x L x q p x T L x , s x .� 4Ž . Ž . Ž . Ž . Ž .Ž .
Ž .The first term of the last expression is zero from 3.5 . Also, the third term

Ž . Ž .of the expression is zero due to 3.4 and homogeneity of T ? with respect
Ž .to L x . Thus, we obtain

ar s g x . 4.3Ž . Ž .
Ž . Ž .Equation 4.3 corresponds to 2.19 , which determines the border of the

city, x.

4.4. Other Conditions
Ž . Ž .From 3.6 and 3.9 , we obtain

x
p t dt s l x . 4.4Ž . Ž . Ž .H 1

0

Ž . Ž . Ž . Ž .When t x is regarded as l x , Equation 4.4 is identical to 2.13 .1
Ž . Ž . Ž . Ž . Ž . Ž .Equations 2.8 , 2.10 , 2.12 , 2.17 , 2.18 , and 2.20 are used as

constraints of the social optimal problem and hence, though they are not
listed in Section 3.2, they are a part of the first order conditions of the
optimal problem.

Ž . Ž .Equations 2.11 and 2.21 are the boundary conditions, and they
belong to the optimal system as well.

In short, all of the equilibrium conditions in Section 2.2 correspond to
the necessary conditions of the social optimum problem.

We are now able to state the following theorem.

THEOREM 1. The competitï e market equilibrium conditions are identical
to the necessary first order conditions of the social optimal problem.11

In relation to the optimal land use problem for housing and transporta-
tion, we can observe the following. In our model, if the amount of land

11 We can interpret our result as an application of the more general principle shown in club
w x w xgood models. See Buchanan 4 and Berglas 2 for more details on this literature. We owe

this observation to one of the referees.
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Ž .used for transportation, L x , is an exogenous function, the market
Ž .equilibrium conditions conditional on exogenous L x continue to be

identical to the ones of social optimal problem conditional on exogenous
Ž . Ž .L x . This can be seen easily. By setting L x exogenous, we must throw

Ž .away equation 2.15 from our competitive market equilibrium conditions.
Ž .From the social optimal problem, the optimality condition on L x , i.e.

Ž .equation 3.4 , must also be taken out. The remaining conditions continue
to hold and thus we establish the following theorem.

Ž .THEOREM 2. If the amount of land allocated for transportation, L x , is
an exogenous function, the remaining market equilibrium conditions are
identical to the social optimal conditions conditional on exogenously gï en
Ž .L x .

These theorems imply two results with regard to the efficient land use
problem.12 First result is due to Theorem 2. We can see that our profit
maximizing road or railroad owners, if competitive, will internalize the
congestion externality by imposing a fare, as a function of distance from
the CBD, equivalent to the optimal congestion toll.13 And therefore, the
residential land use is efficient whether or not the land use for transporta-

Ž .tion is efficient. Second result is due to Theorem 1. That is, if L x is
endogenous, profit maximizing road or railroad owners, if competitive, will
use the efficient amount of land for transportation. Thus we can attain
efficient land use for transportation without any external congestion tolls
imposed by the government authority or any cost-benefit rule.

The intuition of this should be clear. The profit maximizing condition
Ž . Ž .with respect to L x , Equation 2.15 , is identical to the cost benefit rule

based on the market prices. The left hand side is urban housing rent and it
is the marginal social cost of converting a unit of housing land into
transportation land. The right hand side is the marginal social benefit of
extra number of people passing through x by the additional transportation
land. The equation shows that the land for transportation is allocated to
the point that the marginal social cost is equal to the marginal social
benefit. These results complement the existing efficiency results in the
literature.14

5. NOTE ON THE LITERATURE

The first study on the relationship between the congestion externality
w xand the optimal toll appeared in Pigou 17 . He presented an example,

known as ‘‘the case of two roads,’’ to demonstrate that a public investment

12 We are indebted to one of the referees to point this out.
13 See Section 5 for equivalence of the competitive fare and the optimal congestion toll.
14 See Section 5 for more detailed discussion of the literature.
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to construct a new road could end up in futility if the external economy
were to create traffic congestion on the road. He called for a tax which
covers the marginal social cost of externality to secure the maximum
efficiency in the use of the two roads.

w xKnight 13 contested the Pigou’s contention by proving that if the
ownership of the road is given to a private sector agent, precisely the ideal
situation, which was identical to the one brought out by the Pigouvian tax,
would be established through the operation of ordinary economic motives.
Faced with this claim, Pigou withdrew his example from his last edition of
the Economics of Welfare.

w xStrotz 22 first studied the effect of transport congestion in the context
w xof an optimal urban land use model. Oron, Pines, and Sheshinski 16

studied the optimum and equilibrium land use pattern for housing in a
continuous monocentric city model with a traffic congestion where the
transportation land was predetermined, and proved the following proposi-
tion.15

PROPOSITION 1. In a monocentric urban economy model where the
transportation land is predetermined, the optimum resource allocation is
achië ed and can be supported by a competitï e price system if a go¨ernment
authority imposes optimal congestion tolls, which is equal to the number of

Ž .households commuting through x to the center of the city, M x , times the
time spent due to the marginal increase in commuter, t , and redistributes theM
proceed as a lump sum subsidy.

Despite their apparent differences, our model is quite similar to the
Ž . Ž Ž ..OPS model. For example we prefer to put c x and s x , the congestion

variable, explicitly in utility and production functions. In doing so, we
interpret the congestion in our model to be the physical fatigue by riding
commuter trains. The speed of the train is invariant to whether the
congestion existed or not. The congestion in our model, therefore can be
understood as the extra calories needed by consumers to get to work when
riding in the crowded train. And higher level of congestion does not crowd
out the workers from reaching the city center. For the train service
operators, the congestion is a factor that represents the quality of their
train service. If the level of congestion is high, passengers will move away
from the crowded line to a less congested line.

In the OPS model, on the other hand, the congestion is formulated as
the time cost for consumers and the reduced speed in transportation
services. The congestion so formulated is a time loss for consumers and it
could crowd out the commuters from reaching the city center within a

15 w x w xPines and Sadka 18 reaffirmed the result by using the model developed by Arnott 1 ,
where the width of the road was parametrically given.
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limited time. However, the formality of our model becomes almost identi-
cal to the OPS model if some substitutions and reinterpretations are made.

Ž . Ž . Ž .For instance, if the OPS’s Z x q t x rP is replaced by our z x andz
Ž . Ž .their t x rP is replaced by our c x , and if they are reinterpretedz

accordingly, the formal model structure of our consumer sector becomes
identical to that of the OPS model.

A similar transformation will prove that the transportation sector of the
Ž .OPS model is formally identical to ours if their velocity function, V x s

Ž Ž . Ž ..¨ E x , G x , is rewritten as2

E x s f 1rV x , G x , 5.1Ž . Ž . Ž . Ž .Ž .2

Ž . Ž .where E x is the number of commuters who pass through x, V x is the
Ž .velocity of moving those passengers, and G x is the land allocated for2
Ž . Ž .the use of transportation. Notice that their E x is identical to our M x

Ž . Ž . Ž .and their G x is also identical to our L x . Therefore equation 5.1 is2
Ž .formally identical to our transportation production function if 1rV x is

Ž .interpreted as our s x .
There is one difference in treating the land for transportation. As we

Ž .mentioned earlier, OPS assumes that G x is a predetermined function of2
Ž .x. However, in our model, L x is one of the endogenously determined

Ž .functions Theorem 1 and it can be considered exogenous if necessary
Ž .Theorem 2 .

But it is the formulation of the behavioral assumptions that makes two
models distinct from each other. The difference can be compared to that
of Pigou and Knight. The OPS theorem states that the optimal toll must

Ž .be collected by the transportation authority the TA hereafter to attain
efficiency and that the equilibrium is supported by the competitive price
system under the condition that the TA behaves as a tax authority
collecting the optimal external cost. The TA is not a private selfish
enterprise that seeks maximum profit. This is Pigou at heart.

On the other hand, we formulate the competitive behavior of the
transportation sector as a privately owned and selfish profit maximizer.
This makes sense only if there are quite a few train service providers
competing for passengers in order to maximize their profits. The resulting

Ž . Ž .profit maximizing price p x is given by our Equation 2.16 , which can be
rewritten to give

p x s M x rT . 5.2Ž . Ž . Ž .s

Ž .Since 1rT can be interpreted as dsrdT, p x can be interpreted as thes
marginal external congestion cost of an additional commuter. Therefore,
the optimal toll of the OPS becomes identical to our competitive price.
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This should be so since we proved that the economy attains the optimal
resource allocation under this price.

In view from the efficient land use problem, the OPS theorem proved
that residential land use was efficient if the optimal congestion tolls were
collected and redistributed as a lump sum subsidy under the competitive
residential land market. Our Theorem 2, on the other hand, states that
profit maximizing roadrrailroad owners, if competitive, will impose a fare
equivalent to the optimal congestion toll, and thus residential land use is
efficient whether or not the division of land between residential use and
transportation use is efficient. Clearly our approach belongs to that of
Knight.16

w xMills and de Ferranti 15 were the first to examine the optimal land use
pattern for roads in the context of a continuous monocentric city with fixed
housing lot size. They obtained a mathematical expression for the opti-
mality.

w xHochman 7 extended Mills and de Ferranti result by introducing
congestion tolls paid by the commuters. Maintaining the assumption of a
fixed housing lost size, Hochman proved that the Mills and de Ferranti
efficiency condition could be attained if each commuter paid the ‘‘full
congestion toll,’’ which was equal to per capita market rent of the land
used for transit service. His ‘‘full congestion toll’’ can be easily shown to be
equivalent to the social marginal cost of congestion. Therefore, the com-
muters in the Hochman’s model must pay the congestion toll equivalent to
the optimal tolls derived by the OPS model. The toll must be collected by
government authority in practice.

In addition to the optimal toll, the Hochman’s result required the
condition that equated the market housing rent to the marginal increase of
transit service due to a marginal addition of land. The condition may be
interpreted as the cost-benefit criterion by which to allocate the land to
the transit service. In this way the following proposition was first indicated
by Hochman. It was shown more clearly later, but not stated in words, by

w xPines and Sadka 18 .

PROPOSITION 2. If a go¨ernment authority imposes optimal congestion
tolls, then a simple cost-benefit rule based on comparing the market rent of
residential land to the direct benefit of added transportation ser̈ ice from

16 w xHochman and Pines 8 stated in their concluding remarks section that their model
Žwhich included traffic congestion and privately owned profit maximizing transit service

.sector produced an efficient outcome. However, they did not provide the proof. If the HP
model produces the efficiency result, it certainly is a model that belongs to the approach of
Knight. For that, they need to prove the efficiency and should show that their consumers end
up paying the fare equivalent to the social external cost of congestion.
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adding land to transportation use leads the go¨ernment to de¨ote the efficient
amount of land to transportation.

Our Theorem 1 proved that the roles of the optimal congestion tolls and
the cost-benefit criterion in Proposition 2 can be dropped and replaced
by the competitive behavior of our transit service providers. And as a
result the efficient use of land for transportation is assured.17

As we mentioned earlier, we can understand our result intuitively. Our
profit maximizing transit providers use land efficiently as shown by equa-

Ž .tion 2.15 , which is essentially equivalent to the cost-benefit condition
since the left hand side is the market rent of housing land and the right
hand side is the marginal benefit of added transportation service from an

Ž .additional land to the service. In addition, equation 2.16 holds, which in
Ž .turn gives equation 5.2 . Thus the consumers pay the train fare that is

equivalent to the marginal external cost of congestion.
w xHatta 6 proved a similar result to ours in a model with traffic conges-

tion. In his model, the consumers were assumed to have identical utility
functions which depend only on one good called consumables. In other
words, his model assumed away the possibility of substitution between
consumables and housing land, and forced the consumers to use a fixed
amount of housing land. In order to compensate for this, he introduced
capital in his model, which made his model unnecessarily complex. There-
fore his result was not readily comparable to the orthodox competitive
models. Our model treats housing land as one of the consumer’s choice
variables and produces a result readily comparable to the standard opti-
mality result of the competitive economy.

6. CONCLUDING REMARKS

We have shown that competitive forces will bring about the social
optimal allocations in a small open city model where traffic congestion
arises as an external economy to consumers and to the transportation
industry as well. The present results depend on the assumptions that the
production function of consumables is linear homogeneous and that the
providers of the commuter services compete with each other for passen-
gers on the basis of the congestion inclusive price of transportation
services.

17 Notice that the present paper is directly related to the first best resource allocation
Ž .problem where the congestion is optimally priced or optimally priceable by government

authority. There are quite a few papers in the literature that examine the resource allocation
Ž . w xproblem in the second best or third best environment. They include Solow 20 , Kanemoto

w x w x w x w x w x10, 11 , Robson 19 , Arnott 1 , and Pines and Sadka 18 . See also Braid 3 for a grand
listing of papers that consider the optimal land use problem.
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Though we have proved the efficiency results in an open small city
model, we can readily extend the result to the case of a full general
equilibrium model where the rural variables are determined jointly with
the urban variables.18
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